Article ID Journal Published Year Pages File Type
496249 Applied Soft Computing 2008 10 Pages PDF
Abstract
For dealing with the adjacent input fuzzy sets having overlapping information, non-additive fuzzy rules are formulated by defining their consequent as the product of weighted input and a fuzzy measure. With the weighted input, need arises for the corresponding fuzzy measure. This is a new concept that facilitates the evolution of new fuzzy modeling. The fuzzy measures aggregate the information from the weighted inputs using the λ-measure. The output of these rules is in the form of the Choquet fuzzy integral. The underlying non-additive fuzzy model is investigated for identification of non-linear systems. The weighted input which is the additive S-norm of the inputs and their membership functions provides the strength of the rules and fuzzy densities required to compute fuzzy measures subject to q-measure are the unknown functions to be estimated. The use of q-measure is a powerful way of simplifying the computation of λ-measure that takes account of the interaction between the weighted inputs. Two applications; one real life application on signature verification and forgery detection, and another benchmark problem of a chemical plant illustrate the utility of the proposed approach. The results are compared with those existing in the literature.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,