Article ID Journal Published Year Pages File Type
4962709 Simulation Modelling Practice and Theory 2017 17 Pages PDF
Abstract

Performance evaluation is integral to the vast majority of research on Vehicle-to-Vehicle (V2V) technology enabled connected cars. To validate ideas and concepts, researchers have been continuously striving towards the higher accuracy of simulation-based performance evaluation. However, many state-of-the-art network simulators lack comprehensive physical (PHY) layer models. More often, simplified representations of vehicular channel characteristics are used to achieve a trade-off between accuracy and performance. Vehicular channel modeling is a highly complex task because of its unique properties, for example, higher carrier frequency, rapid fluctuations in vehicular channels due to moving scatterers, and propagation in horizontal plane instead of a vertical plane with diffraction and reflection. Efficiently incorporating vehicular channel details into a single network simulator is infeasible; instead, a chain of simulation tools are used together. In this paper, we proposed a two-stage simulation framework which combines several layers of simulation tools into two distinct stages. During the first stage, a Geometry-based vehicular propagation model is used to characterize received signal strength among transmitter-receiver pairs. For this purpose, metropolitan area-wide 2.5D building geometry data and vehicular mobility traces are employed to represent the real-world environment. Subsequently, the output from the first stage is collected and fed as an input to the network simulator. Through extensive simulation-based studies, we analyze the difference between the proposed framework and standard propagation models implemented in the network simulator and their impact on the network-level performance metrics such as packet loss rate (PLR), throughput, latency, and jitter.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, ,