Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4963972 | Computer Methods in Applied Mechanics and Engineering | 2017 | 35 Pages |
Abstract
A novel isogeometric-based cross-sectional analysis of composite beams with arbitrary cross-section geometry and a one-dimensional composite beam model is presented via the concept of dimensional reduction method. In dimensional reduction method, three-dimensional beam problem is decomposed into a two-dimensional beam cross-sectional analysis and a one-dimensional beam problem. To achieve this goal, warping displacements should be computed by solving a cross-sectional eigenvalue problem. The cross-sectional analysis is accomplished by spline basis functions to describe unknown warping fields as well as beam cross-section geometry in an isogeometric framework. The present method benefits from the exact geometric definition of beam cross-section, greatly simplifying mesh refinement and better convergence in contrast to classical finite element method. The proposed beam cross-sectional analysis is applied to a variety of beam cross-section configurations with isotropic and anisotropic materials, which show good correlation with the available results in the literature.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Esmaeel Ghafari, Jalil Rezaeepazhand,