Article ID Journal Published Year Pages File Type
4964073 Computer Methods in Applied Mechanics and Engineering 2016 45 Pages PDF
Abstract
In this work, an immersed boundary finite element method is proposed which is based on a hierarchically refined cartesian b-spline grid and employs the non-symmetric and penalty-free version of Nitsche's method to enforce the boundary conditions. The strategy allows for h- and p-refinement and employs a so-called ghost penalty term to stabilise the cut cells. An effective procedure based on hierarchical subdivision and sub-cell merging, which avoids excessive numbers of quadrature points, is used for the integration of the cut cells. A basic Laplace problem is used to demonstrate the effectiveness of the cut cell stabilisation and of the penalty-free Nitsche method as well as their impact on accuracy. The methodology is also applied to the incompressible Navier-Stokes equations, where the SUPG/PSPG stabilisation is employed. Simulations of the lid-driven cavity flow and the flow around a cylinder at low Reynolds number show the good performance of the methodology. Excessive ill-conditioning of the system matrix is robustly avoided without jeopardising the accuracy at the immersed boundaries or in the field.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,