Article ID Journal Published Year Pages File Type
4964108 Computer Methods in Applied Mechanics and Engineering 2017 23 Pages PDF
Abstract
We prove that for compactly perturbed elliptic problems, where the corresponding bilinear form satisfies a Gårding inequality, adaptive mesh-refinement is capable of overcoming the preasymptotic behavior and eventually leads to convergence with optimal algebraic rates. As an important consequence of our analysis, one does not have to deal with the a priori assumption that the underlying meshes are sufficiently fine. Hence, the overall conclusion of our results is that adaptivity has stabilizing effects and can overcome possibly pessimistic restrictions on the meshes. In particular, our analysis covers adaptive mesh-refinement for the finite element discretization of the Helmholtz equation from where our interest originated.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,