Article ID Journal Published Year Pages File Type
4964122 Computer Methods in Applied Mechanics and Engineering 2017 49 Pages PDF
Abstract
Variationally consistent phase-field methods have been shown to be able to predict complex three-dimensional crack patterns. However, current computational methodologies in the context of large deformations lack the necessary numerical stability to ensure robustness in different loading scenarios. In this work, we present a novel formulation for finite strain polyconvex elasticity by introducing a new anisotropic split based on the principal invariants of the right Cauchy-Green tensor, which always ensures polyconvexity of the resulting strain energy function. The presented phase-field approach is embedded in a sophisticated isogeometrical framework with hierarchical refinement for three-dimensional problems using a fourth order Cahn-Hilliard crack density functional with higher-order convergence rates for fracture problems. Additionally, we introduce for the first time a Hu-Washizu mixed variational formulation in the context of phase-field problems, which permits the novel introduction of a variationally consistent stress-driven split. The new polyconvex phase-field fracture formulation guarantees numerical stability for the full range of deformations and for arbitrary hyperelastic materials.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , , ,