Article ID Journal Published Year Pages File Type
496444 Applied Soft Computing 2007 12 Pages PDF
Abstract

Accurate software development cost estimation is important for effective project management such as budgeting, project planning and control. So far, no model has proved to be successful at effectively and consistently predicting software development cost. A novel neuro-fuzzy Constructive Cost Model (COCOMO) is proposed for software cost estimation. This model carries some of the desirable features of a neuro-fuzzy approach, such as learning ability and good interpretability, while maintaining the merits of the COCOMO model. Unlike the standard neural network approach, the proposed model can be interpreted and validated by experts, and has good generalization capability. The model deals effectively with imprecise and uncertain input and enhances the reliability of software cost estimates. In addition, it allows input to have continuous rating values and linguistic values, thus avoiding the problem of similar projects having large different estimated costs. A detailed learning algorithm is also presented in this work. The validation using industry project data shows that the model greatly improves estimation accuracy in comparison with the well-known COCOMO model.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,