Article ID Journal Published Year Pages File Type
4964720 Computerized Medical Imaging and Graphics 2017 12 Pages PDF
Abstract

•The weighted graphs are constructed to well represent OCT images.•The connected components can avoid some disturbs from the intrinsic speckle noise and organic texture artifacts.•The SLIC superpixels method is used to segment 2D OCT images.•The manifold ranking method is used to exactly detect the boundaries of 2D OCT images.

Using the graph-based a simple linear iterative clustering (SLIC) superpixels and manifold ranking technology, a novel automated intra-retinal layer segmentation method is proposed in this paper. Eleven boundaries of ten retinal layers in optical coherence tomography (OCT) images are exactly, fast and reliably quantified. Instead of considering the intensity or gradient features of the single-pixel in most existing segmentation methods, the proposed method focuses on the superpixels and the connected components-based image cues. The image is represented as some weighted graphs with superpixels or connected components as nodes. Each node is ranked with the gradient and spatial distance cues via graph-based Dijkstra's method or manifold ranking. So that it can effectively overcome speckle noise, organic texture and blood vessel artifacts issues. Segmentation is carried out in a three-stage scheme to extract eleven boundaries efficiently. The segmentation algorithm is validated on 2D and 3D OCT images in three databases, and is compared with the manual tracings of two independent observers. It demonstrates promising results in term of the mean unsigned boundaries errors, the mean signed boundaries errors, and layers thickness errors.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,