Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4964839 | Computers in Biology and Medicine | 2017 | 14 Pages |
Abstract
Diabetes is a major health challenge around the world. Existing rule-based classification systems have been widely used for diabetes diagnosis, even though they must overcome the challenge of producing a comprehensive optimal ruleset while balancing accuracy, sensitivity and specificity values. To resolve this drawback, in this paper, a Spider Monkey Optimization-based rule miner (SM-RuleMiner) has been proposed for diabetes classification. A novel fitness function has also been incorporated into SM-RuleMiner to generate a comprehensive optimal ruleset while balancing accuracy, sensitivity and specificity. The proposed rule-miner is compared against three rule-based algorithms, namely ID3, C4.5 and CART, along with several meta-heuristic-based rule mining algorithms, on the Pima Indians Diabetes dataset using 10-fold cross validation. It has been observed that the proposed rule miner outperforms several well-known algorithms in terms of average classification accuracy and average sensitivity. Moreover, the proposed rule miner outperformed the other algorithms in terms of mean rule length and mean ruleset size.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Ramalingaswamy Cheruku, Damodar Reddy Edla, Venkatanareshbabu Kuppili,