Article ID Journal Published Year Pages File Type
4964927 Computers in Biology and Medicine 2017 11 Pages PDF
Abstract
Seizure events in newborns change in frequency, morphology, and propagation. This contextual information is explored at the classifier level in the proposed patient-independent neonatal seizure detection system. The system is based on the combination of a static and a sequential SVM classifier. A Gaussian dynamic time warping based kernel is used in the sequential classifier. The system is validated on a large dataset of EEG recordings from 17 neonates. The obtained results show an increase in the detection rate at very low false detections per hour, particularly achieving a 12% improvement in the detection of short seizure events over the static RBF kernel based system.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,