Article ID Journal Published Year Pages File Type
4965051 Computers in Biology and Medicine 2016 22 Pages PDF
Abstract
In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,