Article ID Journal Published Year Pages File Type
4965682 Computers & Structures 2017 11 Pages PDF
Abstract
We present a novel Artificial Neural Network (ANN) based phase distribution prediction model for tailored hot stamping. The model was developed and validated using data generated from extensive thermo-mechanical physical simulation experiments and instrumented nanoindentation based phase quantification method. Advanced statistical techniques were used for preventing overfitting, for making the optimal use of available experimental data and for quantification of prediction uncertainty. The final predictions made by the ANN model during its independent validation have shown good agreement with the experimentally generated data and have a RMS prediction error of just 7.7%, which is a significant improvement over the existing models.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,