Article ID Journal Published Year Pages File Type
4965947 Engineering Analysis with Boundary Elements 2017 14 Pages PDF
Abstract
A meshless method based on the method of fundamental solution (MFS) is developed to solve elastic-wave scattering and dynamic stress concentration in a fluid-saturated poroelastic layered half-plane, by utilizing the line sources of cylindrical PI, PII, and SV waves in a poroelastic layered half-plane. The numerical accuracy and stability of the MFS is verified by examining the boundary conditions and comparison with other methods. Subsequently, the amplification effects on displacement, surface hoop stress and fluid pore pressure around a cavity in a three-layered poroelastic half-plane are investigated. Numerical results indicate that the scattering characteristics strongly depend on parameters including the incident frequency and angle, soil-layer porosity and boundary drainage condition. The amplification effects of a cavity in the poroelastic layered half-plane appear to be more significant than the corresponding case of a homogenous half-plane. The amplitude of the fluid pore pressure on the surface of the cavity is amplified up to five times that of the free field, which also considerably aggravates the dynamic stress concentration around the cavity.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,