Article ID Journal Published Year Pages File Type
496620 Applied Soft Computing 2011 7 Pages PDF
Abstract
In this paper, an adaptive DRBF neural control (ADNC) system which is composed of a neural controller and a smooth compensator is proposed. The neural controller utilizes a dynamic radial basis function (DRBF) network to online mimic an ideal controller and the smooth compensator is designed to eliminate the effect of the approximation error between the ideal controller and neural controller. The DRBF network can self-organizing its network structure. All the controller parameters of the proposed ADNC system are online tuned in the Lyapunov sense, thus the stability analytic shows the system output can exponentially converge to a small neighborhood of the trajectory command. Finally, the proposed ADNC system is applied to a chaotic system and a DC motor. Simulation and experimental results verify that a favorable tracking performance and no chattering phenomena can be achieved by the proposed ADNC system.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,