Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4966511 | Information Processing & Management | 2017 | 18 Pages |
Abstract
The Information Content (IC) of a concept is a fundamental dimension in computational linguistics. It enables a better understanding of concept's semantics. In the past, several approaches to compute IC of a concept have been proposed. However, there are some limitations such as the facts of relying on corpora availability, manual tagging, or predefined ontologies and fitting non-dynamic domains in the existing methods. Wikipedia provides a very large domain-independent encyclopedic repository and semantic network for computing IC of concepts with more coverage than usual ontologies. In this paper, we propose some novel methods to IC computation of a concept to solve the shortcomings of existing approaches. The presented methods focus on the IC computation of a concept (i.e., Wikipedia category) drawn from the Wikipedia category structure. We propose several new IC-based measures to compute the semantic similarity between concepts. The evaluation, based on several widely used benchmarks and a benchmark developed in ourselves, sustains the intuitions with respect to human judgments. Overall, some methods proposed in this paper have a good human correlation and constitute some effective ways of determining IC values for concepts and semantic similarity between concepts.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Jiang Yuncheng, Bai Wen, Zhang Xiaopei, Hu Jiaojiao,