Article ID Journal Published Year Pages File Type
4967175 Journal of Computational Physics 2017 34 Pages PDF
Abstract
We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,