Article ID Journal Published Year Pages File Type
4967295 Journal of Computational Physics 2017 35 Pages PDF
Abstract
A finite-volume method is developed for simulating the mixing of turbulent flows at transcritical conditions. Spurious pressure oscillations associated with fully conservative formulations are addressed by extending a double-flux model to real-fluid equations of state. An entropy-stable formulation that combines high-order non-dissipative and low-order dissipative finite-volume schemes is proposed to preserve the physical realizability of numerical solutions across large density gradients. Convexity conditions and constraints on the application of the cubic state equation to transcritical flows are investigated, and conservation properties relevant to the double-flux model are examined. The resulting method is applied to a series of test cases to demonstrate the capability in simulations of problems that are relevant for multi-species transcritical real-fluid flows.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,