Article ID Journal Published Year Pages File Type
4967403 Journal of Computational Physics 2017 21 Pages PDF
Abstract
This paper is concerned with generalized polynomial chaos (gPC) approximation for first-order quasilinear hyperbolic systems with uncertainty. The one-dimensional (1D) hyperbolic system is first symmetrized with the aid of left eigenvector matrix of the Jacobian matrix. Then the gPC stochastic Galerkin method is applied to derive a provably symmetrically hyperbolic equations for the gPC expansion coefficients. The resulting deterministic gPC Galerkin system is discretized by a path-conservative finite volume WENO scheme in space and a third-order total variation diminishing Runge-Kutta method in time. The method is further extended to two-dimensional (2D) quasilinear hyperbolic system with uncertainty, where the symmetric hyperbolicity of the one-dimensional gPC Galerkin system is carried over via an operator splitting technique. Several numerical experiments are conducted to demonstrate the accuracy and effectiveness of the proposed gPC stochastic Galerkin method.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,