Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4967680 | Journal of Computational Physics | 2017 | 16 Pages |
Abstract
We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O(n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Eduardo Corona, Leslie Greengard, Manas Rachh, Shravan Veerapaneni,