Article ID Journal Published Year Pages File Type
496864 Applied Soft Computing 2009 11 Pages PDF
Abstract

In this paper, multi-branch structure of Universal Learning Networks (ULNs) is studied to verify its effectiveness for obtaining compact models, which have neurons connected with other neurons using more than two branches having nonlinear functions. Multi-branch structure has been proved to have higher representation/generalization ability and lower computational cost than conventional neural networks because of the nonlinear function of the multi-branches and the reduction of the number of neurons to be used. In addition, learning of delay elements of multi-branch ULNs has improved their potential to build up a compact dynamical model with higher performances and lower computational cost when applied for identifying dynamical systems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,