Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4968747 | Computer Vision and Image Understanding | 2016 | 41 Pages |
Abstract
This paper presents a robust online multiple object tracking (MOT) approach based on multiple features. Our approach is able to handle MOT problems, like long-term and heavy occlusions and close similarity between target appearance models. The proposed MOT algorithm is based on the concept of multi-feature fusion. It selects the best position of the tracked target by using a robust appearance model representation. The appearance model of a target is built with a color model, a sparse appearance model, a motion model and a spatial information model. In order to select the optimal candidate (detection response) of the target, we calculate a linear affinity function that integrates similarity scores coming from each feature. In our MOT system, we formulate the problem as a data association problem between a set of detections and a set of targets according to their joint probability values. The proposed method has been evaluated on public video sequences. Compared with the state-of-the-art, we demonstrate that our MOT framework achieves competitive results and is capable of handling several challenging problems.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Dorra Riahi, Guillaume-Alexandre Bilodeau,