Article ID Journal Published Year Pages File Type
4969224 Journal of Visual Communication and Image Representation 2017 21 Pages PDF
Abstract
This work addresses the problem of robust fitting of geometric structures to noisy data corrupted by outliers. An extension of J-linkage (called T-linkage) is presented and elaborated. T-linkage improves the preference analysis implemented by J-linkage in term of performances and robustness, considering both the representation and the segmentation steps. A strategy to reject outliers and to estimate the inlier threshold is proposed, resulting in a versatile tool, suitable for multi-model fitting “in the wild”. Experiments demonstrate that our methods perform better than J-linkage on simulated data, and compare favorably with state-of-the-art methods on public domain real datasets.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,