Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4969282 | Journal of Visual Communication and Image Representation | 2017 | 12 Pages |
Abstract
In this paper, we propose a novel approach to automatically detect salient regions in an image. Firstly, some corner superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the background labels based on ranking algorithm. Subsequently, we further employ an objectness measure to pick out and propagate foreground labels. Furthermore, an integration algorithm is devised to fuse both background-based saliency map and foreground-based saliency map, meanwhile an original energy function is acted as refinement before integration. Finally, results from multiscale saliency maps are integrated to further improve the detection performance. Our experimental results on five benchmark datasets demonstrate the effectiveness of the proposed method. Our method produces more accurate saliency maps with better precision-recall curve, higher F-measure and lower mean absolute error than other 13 state-of-the-arts approaches on ASD, SED, ECSSD, iCoSeg and PASCAL-S datasets.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Chenxing Xia, Hanling Zhang, Xiuju Gao,