Article ID Journal Published Year Pages File Type
4969315 Journal of Visual Communication and Image Representation 2017 26 Pages PDF
Abstract
In this paper, a novel method is proposed for Facial Expression Recognition (FER) using dictionary learning to learn both identity and expression dictionaries simultaneously. Accordingly, an automatic and comprehensive feature extraction method is proposed. The proposed method accommodates real-valued scores to a probability of what percent of the given Facial Expression (FE) is present in the input image. To this end, a dual dictionary learning method is proposed to learn both regression and feature dictionaries for FER. Then, two regression classification methods are proposed using a regression model formulated based on dictionary learning and two known classification methods including Sparse Representation Classification (SRC) and Collaborative Representation Classification (CRC). Convincing results are acquired for FER on the CK+, CK, MMI and JAFFE image databases compared to several state-of-the-arts. Also, promising results are obtained from evaluating the proposed method for generalization on other databases. The proposed method not only demonstrates excellent performance by obtaining high accuracy on all four databases but also outperforms other state-of-the-art approaches.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,