Article ID Journal Published Year Pages File Type
4969465 Journal of Visual Communication and Image Representation 2017 42 Pages PDF
Abstract
Anisotropic diffusion can provide better compromise between noise reduction and edge preservation. In multispectral images, there exist different spatial local structures in the same band. Therefore, the levels of smoothing of anisotropic diffusion process should conform to both of image spectral and spatial features. In this paper, we present an effective denoising algorithm by integrating the spectral-spatial adaptive mechanism into a well-balanced flow (WBF) based anisotropic diffusion model, in which an adjustable weighted function is introduced to perform the appropriate levels of smoothing and enhancing according to different feature scales. Moreover, we make the fidelity term in the model to be adaptive by replacing the original noisy signal with the last evolution of the smoothed image. Consequently, the proposed algorithm can better control the diffusion behavior than traditional multispectral diffusion-based algorithms. The experimental results verify that our algorithm can improve visual quality of the image and obtain better quality indices.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,