Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4969478 | Pattern Recognition | 2018 | 19 Pages |
Abstract
Mobile biometrics technologies are nowadays the new frontier for secure use of data and services, and are considered particularly important due to the massive use of handheld devices in the entire world. Among the biometric traits with potential to be used in mobile settings, the iris/ocular region is a natural candidate, even considering that further advances in the technology are required to meet the operational requirements of such ambitious environments. Aiming at promoting these advances, we organized the Mobile Iris Challenge Evaluation (MICHE)-I contest. This paper presents a comparison of the performance of the participant methods by various Figures of Merit (FoMs). A particular attention is devoted to the identification of the image covariates that are likely to cause a decrease in the performance levels of the compared algorithms. Among these factors, interoperability among different devices plays an important role. The methods (or parts of them) implemented by the analyzed approaches are classified into segmentation (S), which was the main target of MICHE-I, and recognition (R). The paper reports both the results observed for either S or R, and also for different recombinations (S+R) of such methods. Last but not least, we also present the results obtained by multi-classifier strategies.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Maria De Marsico, Michele Nappi, Fabio Narducci, Hugo Proença,