Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4969498 | Pattern Recognition | 2018 | 15 Pages |
Abstract
Multi-label classification associates an unseen instance with multiple relevant labels. In recent years, a variety of methods have been proposed to handle the multi-label problems. Classifier chains is one of the most popular multi-label methods because of its efficiency and simplicity. In this paper, we consider to optimize classifier chains from the viewpoint of conditional likelihood maximization. In the proposed unified framework, classifier chains can be optimized in either or both of two aspects: label correlation modeling and multi-label feature selection. In this paper we show that previous classifier chains algorithms are specified in the unified framework. In addition, previous information theoretic multi-label feature selection algorithms are specified with different assumptions on the feature and label spaces. Based on these analyses, we propose a novel multi-label method, k-dependence classifier chains with label-specific features, and demonstrate the effectiveness of the method.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Lu Sun, Mineichi Kudo,