Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4969612 | Pattern Recognition | 2017 | 42 Pages |
Abstract
In this paper, we propose a novel low-rank double dictionary learning (LRD2L) method for robust image classification tasks, in which the training and testing samples are both corrupted. Unlike traditional dictionary learning methods, LRD2L simultaneously learns three components from corrupted training data: 1) a low-rank class-specific sub-dictionary for each class to capture the most discriminative class-specific features of each class, 2) a low-rank class-shared dictionary which models the common patterns shared in the data of different classes, and 3) a sparse error term to model the noise in data. Through low-rank class-shared dictionary and noise term, the proposed method can effectively separate the corruptions and noise in training samples from creating low-rank class-specific sub-dictionaries, which are employed for correctly reconstructing and classifying testing images. Comparative experiments are conducted on three public available databases. Experimental results are encouraging, demonstrating the effectiveness of the proposed method and its superiority in performance over the state-of-the-art dictionary learning methods.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Rong Yi, Xiong Shengwu, Yongsheng Gao,