Article ID Journal Published Year Pages File Type
4969677 Pattern Recognition 2017 36 Pages PDF
Abstract
In spite of with great advantage of discovering arbitrary shapes of clusters, support vector clustering (SVC) is frustrated by large-scale data, especially on resource limited platform. It is due to pricey storage and computation consumptions from solving dual problem and labeling clusters upon the pre-computed kernel matrix and sampling point pairs, respectively. Towards on it, we first present a dual coordinate descent method to reformulate the solver that leads to a flexible training phase carried out on any runtime platform with/without sufficient memory. Then, a novel labeling phase who does connectivity analysis between two nearest neighboring decomposed convex hulls referring to clusters is proposed, in which a new designed strategy namely sample once connected checking first tries to reduces the scope of sampling analysis. By integrating them together, a faster and reformulated SVC (FRSVC) is created with less consumption achieved according to comparative analysis of time and space complexities. Furthermore, experimental results confirm a significant improvement on flexibility of selective efficiency without losing accuracy, with which a balance can be easily reached on the basis of resources a platform equipped.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,