Article ID Journal Published Year Pages File Type
4969733 Pattern Recognition 2017 37 Pages PDF
Abstract
Many computer vision problems involve exploring the synthesis and classification models that map images from the observed source space to a target space. Recently, one popular and effective method is to transform images from both source and target space into a shared single sparse domain, in which a synthesis model is established. Motivated by such a technique, this research attempts to explore an effective and robust linear function that maps the sparse representatio ns of images from the source space to the target space, and simultaneously develop a linear classifier on such a coupled space with both supervised and semi-supervised learning. In order to capture the sparse structure shared by each class, we represent this mapping using a linear transformation with the constraint of sparsity. The performance of our proposed method is evaluated on several benchmark image datasets for low-resolution faces/digits classification and super-resolution, and the experimental results verify the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,