Article ID Journal Published Year Pages File Type
4969775 Pattern Recognition 2017 30 Pages PDF
Abstract
In this work, we propose an extension of CUBT (clustering using unsupervised binary trees) to nominal data. For this purpose, we primarily use heterogeneity criteria and dissimilarity measures based on mutual information, entropy and Hamming distance. We show that for this type of data, CUBT outperforms most of the existing methods. We also provide and justify some guidelines and heuristics to tune the parameters in CUBT. Extensive comparisons are done with other well known approaches using simulations, and two examples of real datasets applications are given.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,