| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4969842 | Pattern Recognition | 2017 | 10 Pages | 
Abstract
												Cystocele is a woman disease that bladder herniates into vagina. Women with cystocele may have problem in urinating and higher risk of bladder infection. The treatment of cystocele highly depends on the severity. The cystocele severity is usually evaluated with the manual transperineal ultrasound measurement for the maximal distance between the bladder and the lower tip of symphysis pubis in the Valsalva maneuver. To improve the efficiency of the measurement, we propose a fully automatic scheme that can measure the distance between the two anatomic structures in each ultrasound image. The whole measurement scheme is realized with a two-phase random forest regression to infer the locations of the two structures in the images for the support of distance measurement. The experimental results suggest automatic distance measurements and the final grading by our random forest regression method are comparable to the measurements and grading scores from three medical doctors, and thus corroborate the efficacy of our method.
											Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Computer Science
													Computer Vision and Pattern Recognition
												
											Authors
												Dong Ni, Xing Ji, Min Wu, Wenlei Wang, Xiaoshuang Deng, Zhongyi Hu, Tianfu Wang, Dinggang Shen, Jie-Zhi Cheng, Huifang Wang, 
											