Article ID Journal Published Year Pages File Type
497001 Applied Soft Computing 2011 10 Pages PDF
Abstract

Content-based image retrieval (CBIR) systems aim to provide a means to find pictures in large repositories without using any other information except the own content of the images, which is usually represented as a feature vector extracted from low-level descriptors. This paper describes a CBIR algorithm which combines relevance feedback, evolutionary computation concepts and distance-based learning in an attempt to reduce the existing gap between the high level semantic content of the images and the information provided by their low-level descriptors. In particular, a framework which is independent from the particular features used is presented. The effect of different crossover strategies and mutation rates is evaluated, and the performance of the technique is compared to that of other existing algorithms, obtaining considerably better and very promising results.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,