Article ID Journal Published Year Pages File Type
4970019 Pattern Recognition Letters 2017 9 Pages PDF
Abstract
We present a convolutional approach to reflection symmetry detection in 2D. Our model, built on the products of complex-valued wavelet convolutions, simplifies previous edge-based pairwise methods. Being parameter-centered, as opposed to feature-centered, it has certain computational advantages when the object sizes are known a priori, as demonstrated in an ellipse detection application. The method outperforms the best-performing algorithm on the CVPR 2013 Symmetry Detection Competition Database in the single-symmetry case. We release code and a new, larger image database.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,