Article ID Journal Published Year Pages File Type
4970212 Pattern Recognition Letters 2016 9 Pages PDF
Abstract
Object representation is one of the most challenging tasks in robotics because it must provide reliable information in real-time to enable the robot to physically interact with the objects in its environment. To ensure robustness, a global object descriptor must be computed based on a unique and repeatable object reference frame. Moreover, the descriptor should contain enough information enabling to recognize the same or similar objects seen from different perspectives. This paper presents a new object descriptor named Global Orthographic Object Descriptor (GOOD) designed to be robust, descriptive and efficient to compute and use. We propose a novel sign disambiguation method, for computing a unique reference frame from the eigenvectors obtained through Principal Component Analysis of the point cloud of the target object view captured by a 3D sensor. Three principal orthographic projections and their distribution matrices are computed by exploiting the object reference frame. The descriptor is finally obtained by concatenating the distribution matrices in a sequence determined by entropy and variance features of the projections. Experimental results show that the overall classification performance obtained with GOOD is comparable to the best performances obtained with the state-of-the-art descriptors. Concerning memory and computation time, GOOD clearly outperforms the other descriptors. Therefore, GOOD is especially suited for real-time applications. The estimated object's pose is precise enough for real-time object manipulation tasks.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,