Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4970323 | Pattern Recognition Letters | 2016 | 13 Pages |
Abstract
In this paper, we exploit regional features for iris liveness detection. Regional features are designed based on the relationship of the features in neighbouring regions. They essentially capture the feature distribution among neighbouring regions. We construct the regional features via two models: spatial pyramid and relational measure which seek the feature distributions in regions with varying size and shape respectively. The spatial pyramid model extracts features from coarse to fine grid regions, and, it models a local to global feature distribution. The local distribution captures the local feature variations while the global distribution includes the information that is more robust to translational transform. The relational measure is based on a feature-level convolution operation defined in this paper. By varying the shape of the convolution kernel, we are able to obtain the feature distribution in regions with different shapes. To combine the feature distribution information in regions with varying size and shape, we fuse the results based on the two models at the score level. Experimental results on benchmark datasets demonstrate that the proposed method achieves an improved performance compared to state-of-the-art features.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Yang Hu, Konstantinos Sirlantzis, Gareth Howells,