Article ID Journal Published Year Pages File Type
497143 Applied Soft Computing 2008 7 Pages PDF
Abstract

In this paper, active noise control using recurrent neural networks is addressed. A new learning algorithm for recurrent neural networks based on Adjoint Extended Kalman Filter is developed for active noise control. The overall control structure for active noise control is constructed using two recurrent neural networks: the first neural network is used to model secondary path of active noise control while the second one is employed to generate control signal. Real-time experiment of the proposed algorithm using digital signal processor is carried-out to show the effectiveness of the method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,