Article ID Journal Published Year Pages File Type
4971958 Applied Ergonomics 2017 23 Pages PDF
Abstract

•User strategies of adopting automated heating controls interface into socio-technical home context.•Maintaining comfort a better interaction indicator than deviation from thermal comfort.•Limited, motivated proactivity in system communications best strategy for soliciting user input.•Managing irregularities & maintaining immediate comfort primary motivators for interaction.•Expectation & reality mismatches cause change from monitoring to system state alteration.

Rising energy demands place pressure on domestic energy consumption, but savings can be delivered through home automation and engaging users with their heating and energy behaviours. The aim of this paper is to explore user experiences (UX) of living with an automated heating system regarding experiences of control, understanding of the system, emerging thermal behaviours, and interactions with the system as this area is not sufficiently researched in the existing homes setting through extended deployment. We present a longitudinal deployment of a quasi-autonomous spatiotemporal home heating system in three homes. Users were provided with a smartphone control application linked to a self-learning heating algorithm. Rich qualitative and quantitative data presented here enabled a holistic exploration of UX. The paper's contribution focuses on highlighting key aspects of UX living with an automated heating systems including (i) adoption of the control interface into the social context, (ii) how users' vigilance in maintaining preferred conditions prevailed as a better indicator of system over-ride than gross deviation from thermal comfort, (iii) limited but motivated proactivity in system-initiated communications as best strategy for soliciting user feedback when inference fails, and (iv) two main motivations for interacting with the interface - managing irregularities when absent from the house and maintaining immediate comfort, latter compromising of a checking behaviour that can transit to a system state alteration behaviour depending on mismatches. We conclude by highlighting the complex socio-technical context in which thermal decisions are made in a situated action manner, and by calling for a more holistic, UX-focused approach in the design of automated home systems involving user experiences.

Related Topics
Physical Sciences and Engineering Computer Science Human-Computer Interaction
Authors
, , ,