Article ID Journal Published Year Pages File Type
497197 Applied Soft Computing 2010 7 Pages PDF
Abstract

This paper proposes a methodology for automatically extracting T–S fuzzy models from data using particle swarm optimization (PSO). In the proposed method, the structures and parameters of the fuzzy models are encoded into a particle and evolve together so that the optimal structure and parameters can be achieved simultaneously. An improved version of the original PSO algorithm, the cooperative random learning particle swarm optimization (CRPSO), is put forward to enhance the performance of PSO. CRPSO employs several sub-swarms to search the space and the useful information is exchanged among them during the iteration process. Simulation results indicate that CRPSO outperforms the standard PSO algorithm, genetic algorithm (GA) and differential evolution (DE) on the functions optimization and benchmark modeling problems. Moreover, the proposed CRPSO-based method can extract accurate T–S fuzzy model with appropriate number of rules.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,