Article ID Journal Published Year Pages File Type
4972632 Information & Management 2016 32 Pages PDF
Abstract
Social media is a major platform for opinion sharing. In order to better understand and exploit opinions on social media, we aim to classify users with opposite opinions on a topic for decision support. Rather than mining text content, we introduce a link-based classification model, named global consistency maximization (GCM) that partitions a social network into two classes of users with opposite opinions. Experiments on a Twitter data set show that: (1) our global approach achieves higher accuracy than two baseline approaches and (2) link-based classifiers are more robust to small training samples if selected properly.
Related Topics
Physical Sciences and Engineering Computer Science Information Systems
Authors
, , ,