Article ID Journal Published Year Pages File Type
497393 Applied Soft Computing 2009 9 Pages PDF
Abstract

Fuzzy artificial neural networks (FANNs), which are the generalizations of artificial neural networks (ANNs), refer to connectionist systems in which all inputs, outputs, weights and biases may be fuzzy values. This paper proposes a two-phase learning method for FANNs, which reduces the generated error based on genetic algorithms (GAs). The optimization process is held on the alpha cuts of each fuzzy weight. Global optimized values of the alpha cuts at zero and one levels are obtained in the first phase and optimal values of several other alpha cuts are obtained in the second phase. Proposed method is shown to be superior in terms of generated error and executed time when compared with basic GA-based algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,