Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4973944 | Digital Signal Processing | 2017 | 6 Pages |
Abstract
This paper deals with iterative detection for uplink large-scale MIMO systems. The well-known iterative linear minimum mean squared error (LMMSE) detector requires quadratic complexity (per symbol per iteration) with the number of antennas, which may be a concern in large-scale MIMO. In this work, we develop approximate iterative LMMSE detectors based on transformed system models where the transformation matrices are obtained through channel matrix decompositions. It is shown that, with quasi-linear complexity (per symbol per iteration), the proposed detectors can achieve almost the same performance as the conventional LMMSE detector. It is worth mentioning that the linear transformations are also useful to reduce the complexity of downlink precoding, so the relevant computational complexity can be shared by both uplink and downlink.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Xiaochen He, Qinghua Guo, Jun Tong, Jiangtao Xi, Yanguang Yu,