Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4974031 | Journal of the Franklin Institute | 2017 | 28 Pages |
Abstract
In this paper, the fault diagnosis (FD) and fault-tolerant tracking control (FTTC) problem for a class of discrete-time systems with faults and delays in actuator and measurement is investigated. In the first step, a discrete delay-free transformation approach is introduced for an constructed augmented system such that the two-point-boundary-value (TPBV) problem with advanced and delayed items can be avoided. Then, the optimal fault-tolerant tracking controller (OFTTC) is proposed with respect to an equivalent reformed quadratic performance index. Moreover, by using the real-time system output rather than the residual errors, a reduced-order-observer-based fault diagnoser for the augmented system is designed to diagnose faults in actuator and measurement, and solve the physically unrealizable problem of proposed OFTTC. Finally, the effectiveness of the proposed fault diagnoser and OFTTC is illustrated by a realistic design example for industrial electric heater.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Shi-Yuan Han, Yue-Hui Chen, Gong-You Tang,