Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4974125 | Journal of the Franklin Institute | 2017 | 30 Pages |
Abstract
In this paper, an integrated design of data-driven fault-tolerant tracking control is addressed relying on the Markov parameters sequence identification and adaptive dynamic programming techniques. For the unknown model systems, the sequence of Markov parameters together with the covariance of innovation signal is firstly estimated by least square method. After a transformation of value function from stochastic to deterministic, a policy iteration adaptive dynamic programming algorithm is then formulated to find the optimal tracking control law. In order to eliminate the influence of unpredicted faults, an active fault-tolerant supervisory control strategy is further constructed by synthesizing fault detection, isolation, estimation and compensation. All these involved designs are performed in the data-driven manner, and thus avoid the information requirement about system drift dynamics. From the perspective of system operation management, the above integrated control scheme provides a framework to achieve the tracking performance optimization, monitoring and maintaining simultaneously. The effectiveness of these conclusions is finally verified via two case studies.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Kezhen Han, Jian Feng, Yu Yao,