Article ID Journal Published Year Pages File Type
4974142 Journal of the Franklin Institute 2017 11 Pages PDF
Abstract
In this paper, a new design formula is presented to accelerate the convergence speed of a recurrent neural network, and applied to time-varying matrix square root finding in real time. Then, according to such a new design formula, a finite-time Zhang neural network (FTZNN) is proposed and investigated for finding time-varying matrix square root. In comparison with the original Zhang neural network (ZNN) model, the FTZNN model makes a breakthrough in the convergence performance (i.e., from infinite time to finite time). In addition, theoretical analyses of the design formula and the FTZNN model are provided in details. Comparative results further verify the superiority of the proposed FTZNN model to the original ZNN model for finding time-varying matrix square root.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
,