Article ID Journal Published Year Pages File Type
4974357 Journal of the Franklin Institute 2017 17 Pages PDF
Abstract
This paper focuses on parameter estimation problems for non-uniformly sampled Hammerstein nonlinear systems. By combining the lifting technique and state space transformation, we derive a nonlinear regression identification model with different input and output updating rates. Furthermore, the unmeasurable state vector is estimated by Kalman filter, and by using the hierarchical identification principle, we develop a hierarchical recursive least squares algorithm for estimating the unknown parameters of the identification model. Finally, illustrative examples are given to indicate that the proposed algorithm is effective.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,