Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4974547 | Journal of the Franklin Institute | 2016 | 19 Pages |
Abstract
This paper considers a social maximize welfare problem in a micro grid. Firstly, to enhance capacity ability and the output stability of generators in a micro grid, a novel social welfare optimization problem is modeled using wavelet neural network and flywheel energy storage system. Based on augmented Lagrangian function, a continuous time distributed gradient algorithm is proposed for the novel model. In the framework of nonsmooth analysis and algebraic graph theory, we prove that with the algorithm, the optimal solution can always be found asymptotically. Simulation results on 14-bus and 100-bus systems are presented to substantiate the performance and characteristics of the proposed algorithm.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Zao Fu, Xing He, Tingwen Huang, Haitham Abu-Rub,