Article ID Journal Published Year Pages File Type
4974641 Journal of the Franklin Institute 2014 21 Pages PDF
Abstract
Dynamical systems in the real world are always subject to various disturbances. This paper studies the dynamics of linear delayed systems with decaying disturbances, both discrete- and continuous-time cases are considered. It is first shown that if an unforced linear system is exponentially stable, then the disturbed system has a dynamical property like exponential stability provided that the disturbance decays at an exponential rate, and has a dynamical property like asymptotic stability provided that the disturbance asymptotically approaches zero. These results are then applied to block triangular systems in the presence of time-varying delays, leading to criteria for checking the stability properties of this class of systems by considering diagonal blocks of system matrices. Particularly, a block triangular system is exponentially stable if and only if each system described by the diagonal blocks of system matrices is exponentially stable. Finally, a numerical example is presented to illustrate the theoretical results.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
,