Article ID Journal Published Year Pages File Type
4974739 Journal of the Franklin Institute 2014 15 Pages PDF
Abstract
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov-Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
,