Article ID Journal Published Year Pages File Type
4974957 Journal of the Franklin Institute 2014 15 Pages PDF
Abstract
A numerical modeling of natural convection under the influence of either axial (Bz) or radial (Br) magnetic field in a cylindrical configuration filled with a low-Prandtl number electrically conducting fluid, is studied. The finite volume method is used to discretize the equations of continuity, Navier Stokes and energy. A computer program based on the SIMPLER algorithm is developed. The flow and temperature fields are presented by stream function and isotherms, respectively. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of the critical Grashof number, Grcr with the increase of the Hartmann number, Ha. The strongest stabilization of the convective flows occurs when the magnetic field is applied in the radial direction. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a radial magnetic field.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,